The Surprising Structural Reason Your Kitchen Sponge is Disgusting

gross sponge in gross sink
GCB News

The Surprising Structural Reason Your Kitchen Sponge is Disgusting

Environmental structure affects interactions between microbial species, making the common kitchen sponge a better incubator for bacterial diversity than a laboratory Petri dish

By Ken Kingery

Researchers at Duke University have uncovered a basic but surprising fact: your kitchen sponge is a better incubator for diverse bacterial communities than a laboratory Petri dish. But it’s not just the trapped leftovers that make the cornucopia of microbes swarming around so happy and productive, it’s the structure of the sponge itself.

In a series of experiments, the scientists show how various microbial species can affect one another’s population dynamics depending on factors of their structural environment such as complexity and size. Some bacteria thrive in a diverse community while others prefer a solitary existence. And a physical environment that allows both kinds to live their best lives leads to the strongest levels of biodiversity.

Soil provides this sort of optimal mixed-housing environment, and so does your kitchen sponge.

The Duke biomedical engineers say their results suggest that structural environments should be taken into account by industries that use bacteria to accomplish tasks such as cleaning up pollution or producing commercial products.

The results appeared online February 9 in the journal Nature Chemical Biology.

Read the full story on Pratt School of Engineering

Related News

A confocal microscopy image of villi in the small intestine shows cell nuclei in blue and absorbed dietary fat in red.

Microbes Help Orchestrate How the Gut Uses its Genes

Mice without microbes rely on an entirely different set of genes to digest fat
view
Terrie Moffitt and Avshalom Caspi in lab

Moffitt, Caspi Elected to American Academy of Arts & Science

Terrie Moffitt and Avshalom Caspi are two of the four Duke faculty elected members of the American Academy of Arts & Science.

view
criss-crossing DNA strands

Tiny Jumping Genes Fingered as Culprit in Rise of Antibiotic Resistance

Activity levels of transposons provide the handle needed for selection to spread antibiotic resistance from wild microbes to huma

view