Comprehensive Profiling of the Proteome, Lipidome, and Metabolome Enabled Using a Prototype UPLC-Compatible Microfluidic Device

J. Will Thompson¹, Jay Johnson², Giuseppe Astarita², Giuseppe Paglia², Jim Murphy², Steven Cohen², Jim Langridge⁴, Geoff Gerhardt², and M. Arthur Moseley¹

¹Duke Proteomics Core Facility, Durham, NC;
²Waters Corporation, Milford, MA;
³Center for Systems Biology, University of Iceland,
⁴Waters Corporation, Manchester, UK
Benefits and Compromises of Changing Column Diameters for Various Applications

0.075 mm

Benefits
- 2-4x Speed & Efficiency/time

Compromises
- 4-5x sample required

0.150 mm

Benefits
- 1/20 Solvent/Sample Consumption
- 20-40x Sensitivity

Compromises
- 10-20% increase in time
- Source/ionization flexibility

2.1 mm

Must be weighed for each individual application
Tile Design and Flow Diagram

- ESI Emitter Assembly
- Incoming flow
- Analytical Column
- Trap Column
- Electrical Connections (EEPROM, Heater)
Evaluation Areas for Prototype 150 um Tile

Label-Free Quantitation, Proteomics

Targeted Peptide Quant, Method Development and Deployment

Metabolomics (RPLC and HILIC)

Lipid Profiling (Flow Injection)
Summary of Multi-Omics Sample Preparation Strategy

Cell Disruption
(Sonication in AmBic pH8)

Bradford Assay, 1.8mg/sample
(normalize by total lysate)

- **Polar Metabolites**
 - ~48%
 - 80/20 MeOH/water
 - 1 hr extraction, N₂ dry
 - Resuspend 2/1/0.2 MeCN/Formic Acid/HFBA
 - Inject 1% for LC-MS/MS (30 min/sample)

- **Lipids**
 - ~48%
 - 80/20 MTBE/MeOH
 - 1 hr extraction, N₂ dry
 - Resuspend 4/2/1 IPA/MeOH/CHCl₃
 - Inject 4% for FIA (10 min/sample)

- **Proteins**
 - ~4%
 - 0.25% w/v Rapigest
 - DTT/IAA/trypsin overnight
 - Acidify 1/2/97 TFA/MeCN/water
 - Inject 20% for 2DLC-MS/MS (3 hr/sample)
150 um Prototype Tile
Direct Inject/Flow Injection Fluidic Diagram

Tile options tested:
- 5, 10, 20 cm
- BEH C18
- HSS T3 C18
- CSH C18
- BEH C4
- BEH Amide HILIC
- Infusion Tile
RPLC Metabolomics Method

Analysis used 1% of isolate:
150 um x 10 cm 1.7 um BEH C18 tile, F = 2.0 ul/min at 45°C
Mobile phase A: 0.1% Formic acid, 0.02% HFBA, in water
Mobile Phase B: 0.1% Formic acid in 10/90 IPA/MeCN
Mass Spectrometry: Synapt G2 HDMS, Resolution mode (25,000 Rs) @ 5Hz

>17,000 metabolite Features in 12 minutes
Lipid Profiling using Flow Injection Analysis and an Infusion Tile

Analysis of the Lipid Isolate from MCF7 cells (prepared using MTBE/MeOH extraction).
- Ion-Mobility Data-Independent Analysis
- Synapt G2, 0.6 sec scans (6V or 15-45V)
- 3 ul/min flow rate
- Mobile phase was 10/90 IPA/MeCN with 0.1% formic acid

Approximately 600 unique lipid species quantified in a 4 minute run (5 min cycle)
150 um Prototype Tile
2D with Dilution Fluidics

RP1 - Xbridge-BEH130 C18 NanoEase Column, 5μm, 300 μm x 50 mm
Trap - UPLC Symmetry C18 Trap, 5 μm, 180 μm x 20 mm
MS/MS - Synapt G2 – hdDIA (hdMS__E)
Goals for High-Throughput Proteomics Analysis Using 2DLC and TRIZAIC

Initial Trapping Step
- **1D**
 - Nano*
 - 90 min gradient @ 0.4 ul/min

- **2D**
 - Nano* TriZAIC
 - 37 min gradient @ 0.4 ul/min (nano) or 3 uL/min (Tile)

- **2D**
 - TriZAIC
 - 18.5 min gradient @ 3 uL/min (Tile)

- **2D**
 - TriZAIC
 - 18.5 min gradient @ 3 uL/min (Tile)

Fraction Elution to 2nd Dimension
- **1D**
 - Nano*

- **2D**
 - Nano* TriZAIC

- **2D**
 - TriZAIC

Analytical Separation

Time per sample (hr)

<table>
<thead>
<tr>
<th>Type</th>
<th>Column</th>
<th>Φ</th>
<th>Φ/min</th>
</tr>
</thead>
<tbody>
<tr>
<td>1D</td>
<td>Nano*</td>
<td>112</td>
<td>0.8</td>
</tr>
<tr>
<td>2D</td>
<td>Nano* TriZAIC</td>
<td>295*</td>
<td>1.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>405</td>
<td>1.35</td>
</tr>
<tr>
<td>2D</td>
<td>TriZAIC</td>
<td>350</td>
<td>2.0</td>
</tr>
<tr>
<td>2D**</td>
<td>TriZAIC</td>
<td>350</td>
<td>2.6**</td>
</tr>
</tbody>
</table>

* Current “standard” configurations

**Potential elimination of between-fraction trapping time with dual-trap 2DLC prototype (K. Fadgen and M. Staples)
2D LC/MS/MS on Synapt G2 nanoLC vs 150 um Tile

75 um x 150 mm BEH C18 column
7 to 35% MeCN in 37 min, 0.5 ul/min

150 um x 100 mm BEH C18 nanoTile
7 to 35% MeCN in 18.5 min, 3.0 ul/min
TRIZAIC 150 2DLC Configuration
Chromatographic Evaluation versus 75 um Capillary Column technology
Acknowledgments

Duke University Proteomics Core Facility
http://www.genome.duke.edu/cores/proteomics/

Funding
NIH S10 grant
Duke School of Medicine
CTSA grant UL1RR024128

M. Arthur Moseley, Ph.D.
Director
919-684-4456
arthur.moseley@duke.edu

J. Will Thompson, Ph.D.
Sr. Laboratory Administrator
919-684-5454
will.thompson@duke.edu

Laura G. Dubois
Laboratory Analyst II
919-684-6314
laura.dubois@duke.edu

Erik J. Soderblom, Ph.D.
Laboratory Analyst II
919-613-8162
ero.soderblom@duke.edu

Matthew W. Foster, Ph.D.
Assistant Research Professor
mwfoster@duke.edu

Meredith E. Turner
Research Technician II
919-684-1475
meredith.turner@duke.edu

Broanna M. Richardson, Ph.D.
Laboratory Analyst II
919-681-0327
brenna.richardson@duke.edu