Multidisciplinary University Research Initiative tackles synthetic biology

Lingchong You and Ashutosh Chilkoti
GCB News

Multidisciplinary University Research Initiative tackles synthetic biology

By Alissa Kocer

Lingchong You, Ph.D., and Ashutosh Chilkoti, Ph.D., are collaborating with researchers at Washington University in St. Louis, Princeton University, and University of North Carolina on a five-year, $7.5 million Multidisciplinary University Research Initiative (MURI) award from the Department of Defense.

“For the longest time, the central dogma of biology was that structure equals function,” Chilkoti said. “But some proteins lack that structure, so they had been considered unimportant.” Research now, though, is showing that is not the case. 

These blob-like proteins have intrinsically disordered regions that go through phase transitions and can form membraneless organelles – squishy, liquid-like droplets that have defined phase boundaries but no delimiting membranes. Researchers are finding more proteins with this phase behavior linked to their function in cell.

The team wants to know how these droplets are controlled by the surface properties of the droplet. The overall goal is to uncover the fundamental design principles that will allow them to design and engineer novel, synthetic and membraneless organelles. 

First, they will investigate naturally occurring systems in the context of their interfaces to learn the rules. Then they will be able to design artificial systems. Next, they will take those artificial systems and put them into cells as a new way to control cell behavior.

“What kind of inspiration can we draw such that we can create synthetic systems that take advantage of phase transition to program cell behavior for interesting circuits for practical applications?” You asked. 

Chilkoti works with artificial proteins and polypeptides and can make proteins go through phase behavior. You has been building circuits using existing parts as part of his research, but now, Chilkoti wants to build You circuits using new parts for gene circuits that are fueled by phase transitions. This will allow them to make a cell do something better or new.

One example of its utility could be making bacteria more sensitive to antibiotics, or in a world where climate change is going to impact the way we live and grow crops, they could build a circuit that would make plant cells more heat-tolerant. The opportunities seem limitless.

“This is one of the new frontiers in biology,” Chilkoti said. “This is going to be a completely new way of doing synthetic biology.”

Related News

A diagram of the species of bacteria from an individual patient that are more likely to be found with tumor samples (blue) or normal tissue samples (yellow). The layout of the diagram shows the bacterial family tree, with node sizes proportional to the number of times a given bacterial group is observed. This specific diagram “rediscovers” that Fusobacterium species are strongly enriched in colorectal cancer and offers the new insight that Campylobacter species are also associated with the disease.

The Cancer Microbiome Reveals Which Bacteria Live in Tumors

Researchers clean up data to identify the bugs better

By Ken Kingery

stack of books

Research Roundup: December 2020

Here are summaries of a selection of the papers published by GCB faculty in December 2020:

Claire Engstrom

Claire Engstrom, a Student Researcher Working to Treat Duchenne’s Muscular Dystrophy by Optimizing CRISPR-cas9

Meet Claire Engstrom, a Senior from Pasadena California. Claire is a Biology major who works in the Gersbach Lab at Duke.