Computational Biology & Bioinformatics

PHD in Computational Biology & Bioinformatics

Program Principles & Goals

The Ph.D. Program in Computational Biology & Bioinformatics (CBB) is an integrative, multi-disciplinary training program that encompasses biology using computational and quantitative methods. In and out of the classroom, students learn to apply the tools of statistics, mathematics, computer science and informatics to biological problems. Vibrant and innovative research in these fields provides exciting interactions between biological and computational scientists. Because CBB is based in the Duke Center for Genomic and Computational Biology (GCB), it offers a unique opportunity for students to become tomorrow's leaders in genome sciences.

Group photo of CBB students and faculty



View Program Details

Meet A Faculty Member

  • Elizabeth Hauser
    Professor of Biostatistics and Bioinformatics

    Elizabeth Hauser, Professor in the Department of Medicine with secondary appointments in Biostatistics and Bioinformatics, Statistical Science, and Nursing, is a Statistical Geneticist with graduate degrees in Biostatistics and Epidemiology. Her research interests include statistical methods development for the analysis of complex genetic traits, genetic analysis of family data, identification of gene-environment interactions, and integrated analysis of metabolomics and genomic data. She has worked on studies of cardiovascular disease, diabetes, kidney disease, aging, and cancer. 

    My research interests are focused on developing and applying statistical methods to search for genes causing common human diseases. Recent work has been in the development of statistical methods for genetic studies and in identifying optimal study designs for genetic studies of complex traits. As application of these methods to specific diseases has progressed it has become apparent that etiologic and genetic heterogeneity is a major stumbling block in the research for genes for common diseases.&nbsp; I am interested in developing methods to detect and account for genetic heterogeneity as one type of complex genetic model.&nbsp;&nbsp;I am also interested in the extent to which environmental exposures interact with genetic variants to modify risks of complex diseases.&nbsp; Both genetic heterogeneity and gene-environment interactions must be taken into account to achieve the goals of personalized medicine.<br /><br />Collaborative studies under way at Duke University, the Durham VA&nbsp;and elsewhere provide the opportunity to apply new methods to ongoing studies. My main area of application is in identifying genes for cardiovascular conditions using a variety of study designs.&nbsp;&nbsp;One such study is the GENECARD study to identify genes for early onset coronary artery disease in families.&nbsp;Another study is the AGENDA study based on the CATHGEN cohort of patients from the Duke Cardiac Catheterization Lab. These two studies have been used to successfully identify a number of novel genes for coronary artery disease. I also work on studies of genetic effects in aging, kidney disease and colon cancer.&nbsp;&nbsp;<br /> <br />In turn these Collaborative studies continue to raise methodological research questions such as the effect of model misspecification on the results of linkage studies, the interpretation of confirmation studies to replicate linkage results, and the utility of a method for including additional phenotypic information when assessing linkage results. <br /> <br />Keywords: linkage analysis, genetic association, gene mapping, genetic epidemiology, statistical genetics, biostatistics, cardiovascular disease, computational biology, &nbsp;diabetes, aging,&nbsp;colon cancer, colon polyps,&nbsp;kidney disease

Florian Wagner

Florian Wagner

5th year CBB Student Sandeep Dave Lab
Dec 12
Arjun Raj, PhD, University of Pennsylvania
CBB Seminar Series

Single cell analysis of therapy resistance in cancer